73 research outputs found

    Ocean dynamics shapes the structure and timing of Atlantic Equatorial Modes

    Get PDF
    A recent study has brought to light the co‐existence of two distinct Atlantic Equatorial Modes during negative phases of the Atlantic Multidecadal Variability: the Atlantic Niño and Horse‐Shoe (HS) mode. Nevertheless, the associated air‐sea interactions for HS mode have not been explored so far and the prevailing dynamic view of the Atlantic Niño has been questioned. Here, using a forced ocean model simulation, we find that for both modes, ocean dynamics is essential to explain the equatorial SST variations, while air‐sea fluxes control the off‐equatorial SST anomalies. Moreover, we demonstrate the key role played by ocean waves in shaping their distinct structure and timing. For the positive phase of both Atlantic Niño and HS, anomalous westerly winds trigger a set of equatorial downwelling Kelvin waves (KW) during spring‐summer. These dKWs deepen the thermocline, favouring the equatorial warming through vertical diffusion and horizontal advection. Remarkably, for the HS, an anomalous north‐equatorial wind stress curl excites an upwelling Rossby wave (RW), which propagates westward and is reflected at the western boundary becoming an equatorial upwelling KW. The uKW propagates to the east, activating the thermocline feedbacks responsible to cool the sea surface during summer months. This RW‐reflected mechanism acts as a negative feedback causing the early termination of the HS mode. Our results provide an improvement in the understanding of the TAV modes and emphasize the importance of ocean wave activity to modulate the equatorial SST variability. These findings could be very useful to improve the prediction of the Equatorial Modes

    Equatorial upper-ocean dynamics and their interaction with the West African monsoon

    Get PDF
    Zonal wind anomalies in the western equatorial Atlantic during late boreal winter to early summer precondition boreal summer cold/warm events in the eastern equatorial Atlantic (EEA) that manifest in a strong interannual Atlantic cold tongue (ACT) variability. Local intraseasonal wind fluctuations, linked to the St. Helena anticyclone, contribute to the variability of cold tongue onset and strength, particularly during years with preconditioned shallow thermoclines. The impact of cold tongue sea surface temperature (SST) anomalies on the wind field in the Gulf of Guinea is assessed. It contributes to the northward migration of humidity and convection and possibly the West African monsoon (WAM) jump. Copyright @ 2010 Royal Meteorological Societ

    Deep chlorophyll maximum and upper ocean structure interactions: Case of the Guinea Thermal Dome

    Get PDF
    Deep Chlorophyll Maximum (DCM) modifies the upper ocean heat capture distribution and thus impacts water column temperature and stratification, as well as biogeochemical processes. This energetical role of the DCM is assessed using a 1 m-resolution 1D physical-biogeochemical model of the upper ocean, using climatological forcing conditions of the Guinea Dome (GD). This zone has been chosen among others because a strong and shallow DCM is present all year round. The results show that the DCM warms the seasonal thermocline by +2°C in September/October and causes an increase of heat transfer from below into the mixed layer (ML) by vertical diffusion and entrainment, leading to a ML warming of about 0.3°C in October. In the permanent thermocline, temperature decreases by up to 2°C. The result is a stratification increase of the water column by 0.3°C m−1 which improves the thermocline realism when compared with observations. At the same time, the heating associated with the DCM is responsible for an increase of nitrate (+300%, 0.024 ÎŒM), chlorophyll (+50%, 0.02 ÎŒg l−1) and primary production (+45%: 10 mg C m−2 day−1) in the ML during the entrainment period of October. The considered concentrations are small but this mechanism could be potentially important to give a better explanation of why there is a significant amount of nitrate in the ML. The mechanisms associated with the DCM presence, no matter which temperature or biogeochemical tracers are concerned, are likely to occur in a wide range of tropical or subpolar regions; in these zones a pronounced DCM is present at least episodically at shallow or moderate depths. These results can be generalized to other thermal dome regions where relatively similar physical and biogeochemical structures are encountered. After testing different vertical resolutions (10 m, 5 m, 2.5 m, 1 m and 0.5 m), we show that using at least a 1 m vertical resolution model is mandatory to assess the energetical importance of the DCM

    Is there evidence of changes in tropical Atlantic variability modes under AMO phases in the observational record?

    Get PDF
    The Atlantic multidecadal oscillation (AMO) is the leading mode of Atlantic sea surface temperature (SST) variability at multidecadal time scales. Previous studies have shown that the AMO could modulate El Niño–Southern Oscillation (ENSO) variance. However, the role played by the AMO in the tropical Atlantic variability (TAV) is still uncertain. Here, it is demonstrated that during negative AMO phases, associated with a shallower thermocline, the eastern equatorial Atlantic SST variability is enhanced by more than 150% in boreal summer. Consequently, the interannual TAV modes are modified. During negative AMO, the Atlantic Niño displays larger amplitude and a westward extension and it is preceded by a simultaneous weakening of both subtropical highs in winter and spring. In contrast, a meridional seesaw SLP pattern evolving into a zonal gradient leads the Atlantic Niño during positive AMO. The north tropical Atlantic (NTA) mode is related to a Scandinavian blocking pattern during winter and spring in negative AMO, while under positive AMO it is part of the SST tripole associated with the North Atlantic Oscillation. Interestingly, the emergence of an overlooked variability mode, here called the horseshoe (HS) pattern on account of its shape, is favored during negative AMO. This anomalous warm (cool) HS surrounding an eastern equatorial cooling (warming) is remotely forced by an ENSO phenomenon. During negative AMO, the tropical–extratropical teleconnections are enhanced and the Walker circulation is altered. This, together with the increased equatorial SST variability, could promote the ENSO impacts on TAV. The results herein give a step forward in the better understanding of TAV, which is essential to improving its modeling, impacts, and predictability

    Global perspectives on observing ocean boundary current systems

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here

    Microbial and Chemical Characterization of Underwater Fresh Water Springs in the Dead Sea

    Get PDF
    Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water’s chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea−Dead Sea water conduit

    Is the boreal spring tropical Atlantic variability a precursor of the Equatorial Mode?

    No full text
    15 pages, 7 figures.-- The data from the INTER, MM-REF, MM-WIND and MM-WAVE simulations are available from the authors upon requestThe Equatorial Mode (EM) governs the tropical Atlantic inter-annual variability during boreal summer. It has profound impacts on the climate of adjacent and remote areas. However, predicting the EM is one of the most challenging and intriguing issues for the scientific community. Recent studies have suggested a possible connection between the boreal spring Meridional Mode (MM) and the EM through ocean wave propagation. Here, we use a set of sensitivity experiments with a medium-resolution ocean model to determine the precursor role of a MM to create equatorial SST variability. Our results demonstrate that boreal summer equatorial SSTs following a MM, are subject to two counteracting effects: the local wind forcing and remotely-excited oceanic waves. For a positive MM, the anomalous easterly winds blowing along the equator, shallow the thermocline, cooling the sea surface via vertical diffusion and meridional advection. Anomalous wind curl excites a downwelling Rossby wave north of equator, which is reflected at the western boundary becoming an equatorial Kelvin wave (KW). This downwelling KW propagates eastward, deepening the thermocline and activating the thermocline feedbacks responsible for the equatorial warming. Moreover, the local wind forcing and RW-reflected mechanism have a significant and comparable impact on the equatorial SST variability. Changes in the intensity and persistence of these distinct forcings will determine the equatorial SST response during boreal summer. Our results give a step forward to the improvement of the EM predictabilityThe research leading to these results received funding from the EU FP7/2007-2013 under Grant Agreement 603521 (PREFACE project), the MORDICUS grant under contract ANR-13-SENV-0002-01, CNES/EUMETSAT (CNES-DIA/TEC-2016.8595, EUM/LEO-JAS3/DOC/16/852054) and the MSCA-IF-EF-ST FESTIVAL (H2020-EU project 797236)Peer Reviewe

    Generation Mechanism of Spiciness Anomalies: An OGCM Analysis in the North Atlantic Subtropical Gyre

    No full text
    International audienceOceanic teleconnections between the low and midlatitudes are a key mechanism to understanding the climate variability. Spiciness anomalies (density-compensated anomalies) have been shown to transport temperature and salinity signals when propagating along current streamlines in the subtropical gyres of the Atlantic and Pacific Oceans. The generation mechanism of spiciness anomalies in the North Atlantic subtropical gyre is investigated using an analytical model based on the late-winter subduction of salinity and temperature anomalies along isopycnal surfaces. The keystone of this approach is the change of the coordinates frame from isobaric to isopycnic surfaces, suited for subduction problems. The isopycnal nature of spiciness anomalies and the use of a linear density equation allows for the analytical model to depend only upon surface temperature and salinity anomalies, the mean thermocline currents, and the surface density ratio. This model clarifies and above all quantifies the mechanism by which surface temperature and salinity anomalies are modulated by density ratios to produce fully different isopycnal temperature and salinity anomalies.A global run from the ocean GCM (OGCM) OcĂ©an ParallĂ©lisĂ© (OPA) over the period 1948–2002 provides the reference data in which the North Atlantic subtropical thermocline spiciness variability is analyzed. Two EOF modes are sufficient to explain half of the low-frequency variability in the OGCM: one is maximum over the northeastern subtropics, and the other is in the central basin. The analytical model reproduces well the spatial pattern, amplitude, and sign of these two main modes. It confirms that the two centers of action of the anomalies are conditioned by the surface density ratio, the first corresponding to null salinity gradients and the second to near-density-compensated temperature gradients. Considering that the analytical model has good skills at reproducing the decadal variability of the OGCM spiciness anomalies in the permanent thermocline, it is believed that this is an interesting tool to understand and forecast the ventilation of the North Atlantic subtropical gyre at this time scale

    Estimation of the vertical velocities associated with large scale dynamics

    No full text
    International audienceApart from some exceptions (e.g. certain convection movements, small scale turbulence, or surface gravity wave), vertical velocities in the ocean are generally too weak to be measured. In particular, that is the case of the vertical movements associated to the large scale (basin wide) dynamics. This prevents any accurate assessment of the thermohaline circulation return flow and the thermocline vertical ventilation (mass, heat, oxygen and carbon fluxes). A 24 year averaged global run is used to assess the domain of validity of the linear vorticity balance (LVB). In this data set vertical velocities are mainly controlled by the large scale LVB dynamics at subtropical and tropical latitudes. Therefore it should be possible to reconstruct the vertical velocity field by integrating vertically the LVB with an appropriate boundary condition. Various conditions have been tested and it turns out that the condition of no vertical motion at 1000 m is the most promising for applying the same methodology to climatological observations ..

    Interannual Variability of the Mixed Layer Winter Convection and Spice Injection in the Eastern Subtropical North Atlantic

    No full text
    International audienceThe Argo dataset is used to study the winter upper-ocean conditions in the northeastern subtropical (NEA) Atlantic during 2006–12. During late winter 2010, the mixed layer depth is abnormally shallow and a negative anomaly of density-compensated salinity, the so-called spiciness, is generated in the permanent pycnocline. This is primarily explained by unusual weak air–sea buoyancy flux during the late winter 2010, in contrast with the five other studied winters. Particularly deep mixed layers and strong spiciness anomalies are observed during late winter 2012. The 2010 winter conditions appear to be related to historically low North Atlantic Oscillation (NAO) and high tropical North Atlantic index (TNA). Interannual variability of the eastern subtropical mixed layer is further investigated using a simple 1D bulk model of mean temperature and salinity linear profiles, based on turbulent kinetic energy conservation in the upper-ocean layer, and forced only with seasonal air–sea buoyancy forcing corresponding to fall–winter 2006–12. It suggests that year-to-year variability of the winter convective mixing driven by atmospheric buoyancy flux is able to generate interannual variability of both late winter mixed layer depth and spiciness in a strongly compensated layer at the base of the mixed layer and in the permanent pycnocline
    • 

    corecore